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Remark 2. A remarkable property of the above estimate for the growth of the perturbations 
is that it was derived independently of the specific form of the second variation of the 
potential energy l-l@'. The only prerequisite for the validity of (2.9) is the existence of 
a perturbation with negative U(S) (2.2) and the truth of (2.3). 

Remark 3. An interesting problem in determining the largest value A+ of the upper 
bound A (2.11) for all kinematiaally admissible fields f*(n) (2.21. Solution of this 
problem would make it possible to determine not only the largest values of h but also to 
ascertain the actual form of those initial data (2.10) most "dangerous" in this respect. 
The variational problem arising here reduces to minimizing the functional II(') conditional 

on M=l. 

Remark 4. Proofs of the instability of the above system in various special cases, using 
methods of spectral theory, may be found in /3, 41'. The formulation of the problem studied 
in /3/ is the same as that considered here, but there the surface tension forces were not 
taken into account. On the other hand, surface tension was considered in /4/ 
the case of a stationary vessel. In /3, 4/ the existence of eigenvalues that 
growth of the perturbations is proved, but without supplying estimates of the 
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A TURBULENT VORTICAL DYNAMO* 

M.A. GOL'DSHTIK and V.N. SHTERN 

The possibility of the spontaneous appearance of rotational motion in a 
half-space above a plane, caused by bifurcation at some Reynolds number 
determining the intensity of the given sources of motion not giving rise 
to external force moments, is studied in the class of selfsimilar 
conical flows of an incompressible fluid of variable viscosity. The 
impossibility of spontaneous rotation is shown for the cases of constant 
viscosity and state of rest, and of weak sources of the basic flow. 
Examples of the bifurcations of the autorotation are constructed for an 
ascending, one-cell motion under the condition that there is no 
rotational friction, and for a two-cell motion with conditions of 
regularity on the axis and adhesion at the fixed plane. In these cases 
the motion is made up of an outer laminar flow, and a turbulent, high 
viscosity kernel near the axis. The examples quoted obviously model 
rotating astrophysical jets, the initiation of a whirlpool, and the 
onset of a firestorm above a plane under the action of a quadrupole heat 
source. 

1. The comept of a VorticaZ dgnamo. We shall use the name “vertical dynamo" to describe 
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the spontaneous excitation of the rotational motion of a fluid without visible sources of 
rotation, i.e. under the conditions when irrotational motion is known to be possible. The 
appearance of a vertical dynamo is connected with the fact of a straightforward bifurcation 
of the initial mode at some Reynolds number Re = Re,, when the equation for the rotational 
component begins to admit of non-trivial solutions corresponding to a stable mode, and the 
mode without rotation becomes unstable. This means that in almost all cases of initial 
perturbations of the original mode, it will evolve with time, at fixed Re> Re,, to a stable 
mode with rotation. There are two such modes in the present case, and they differ from each 
other in the direction of rotation only. It is precisely this phenomenon that we call here 
the "autorotation" or the "vertical dynamo". 

Thus the vertical dynamo has three characteristic features: 1) there is an excitation 
threshold (relative to Re) , 2) the direction of rotation is arbitrary and depends on the 
sign of the initial rotational perturbation, and 3) when the motion has been established, the 
initial perturbation is completely forgotten and the intensity of rotation does not depend on 
it. From the point of view of the above properties, the problem of the vertical dynamo is 
completely analogous to the well-known problem of the MHD dynamo in which the magnetic field 
is spontaneously generated during the motion of a conducting fluid without external field 
sources. It is this that suggested the name vertical dynamo. 

The problem of whether a steady-state vertical dynamo is possible under the conditions 
of the axisymmetric problem, is not trivial. In the related MHD problem Cowling's theorem 
/l/ is encountered, according to which spontaneous generation of a magnetic field is not 
possible in the axisymmetric case. An analogous theorem fox the circulation can be proved 
for an axisymmetric flow of a homogeneous liquid under the condition of adhesion. It is 
clear that conditions of adhesion, and in particular the fact that the rotational component 
of velocity if equal to zero, form an obstacle to the rotation of the liquid. If, in spite 
of this, an autorotation appears, then we shall call it "strong". In contrast, a 
spontaneously occurring rotation when there is no friction at the boundary, will be called 
"weak". We cannot have a strong rotation in a uniform liquid. If on the other hand the 
conditions of zero rotational friction are specified on a part of the boundary, then 
autorotation is possible, as shown in a recently discovered example*. (*Gol?dshtik M.A. and 
Yavorskii N-I., Flow between a rotating porous disc and a plane. Preprint 152, Novosibirsk, 
ITF, Siberian Branch, Academy of Sciences of the USSR, 1987). The appearance of autorotation 
connected with the previous loss of symmetry of the initial mode caused by hydrodynamic 
instability, was studied in /2/. 

In the present paper we disclose a bifurcation of autorotation in the axisymmetric flow 
of an inhomogeneous liquid of variable viscosity. If we regard the variation in viscosity as 
the result of turbulence, then using the Boussinesq model we can construct examples of the 
excitation of weak and strong autorotation for a number of flows with a turbulent kernel, or 
in other words, to present a model of a turbulent vertical dynamo. 

We will carry our investigation in the class of conically symmetric flows, in which the 
velocity vector decreases in modulo in inverse proportion to the spherical radius in the 
direction away from the origin of coordinates. This class includes the well-known solutions 
for the flow in a diffuser, the solution for an impulsive source of anaxisymmetric submerged 
jet /3/, and the jets emerging from the tip of a cone 141, the solutions for swirling jets 
/5, 61, and a number of others /'J-9/*. (*See also: Gol'dshtik M-A. and Shtern V-N., Induced 
jets and critical phenomena in viscous flows. Preprint 159, Novosibirsk, ITF Siberian 
Branch, Academy of Sciences of the USSR, 1987; Gol'dshtik M.A. and Shtern V-N., Selfsimilar 
problems of thermal convection. Preprint 170, Novosibirsk, ITF, Siberian Branch, Academy of 
Sciences of the USSR, 1988.). 

All flows in question have a distinct feature, namely their selfsimilarity related to 
the absence of a characteristic scale of length, and to specifying, as the sources of motion, 
the quantities with dimensions of kinematic viscosity v or of its degree. In the simplest 
case only one such quantity & is specified, determining the Reynolds number Re = Qlv. The 
following assertion holds for the motions of the type discussed here /la/: if.a motion exists, 
then it must be selfsimilar. 

2. Basic equations. We shall consider a turbulent flow stationary in the mean. We shall 
use the Boussinesqmodel to close the Reynolds equations, introducing the effective turbulent 
kinematic viscosity vtr and we define the total relative viscosity by the relation &==(V-i- 
v&v. Then the equations for the mean velocity field u can be written in the form /9i 

(u,V)u=-p-lV~+vehu+vV~.DZ)iF, Vu=0 (2.1) 

(D is the doubled deformation rate tensor and F is the vector of external forces). We shall 
assume that the turbulent motion is selfsimilar in the mean and belongs to the class with 
conical symmetry, i.e. 
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-$=-&fJ(2)+C*nSt, jX=COS0 

where R, 8, cp are the sphericaf coordinates, 6 is the angle between the positive 8 semi- 

axis and the radius vector, and g, is the azimuthal angle on which the flow does not depend. 

Here and henceforth a prime denotes a derivative with respect to I. Conical symmetry is 

possible only in the case when the external force has the following representation: 

and the 
We 

produce 

F = p+R-af (2) 12.3) 

turbulent viscosity depends only on'the angle 8, E = E (x) /81. 

will further assume that f = &,fe,O}, which means that the external forces do not 

rotational momentum. The symmetric tensor D has the following components: 

D 2v 
R Ii = TY', &e = 

Y (1 - rq. 2Y 
R' Y"f- I 1-S ) 

Dee=-$- l--z, $ sy De@ = - -$r(~+&), 

D,=-+(,‘++ 
i 

42.4) 

The vector Oe has a unique non-zero component 

(VE), = --(I - Z?)'i%'R-' (2.5) 

Substituting relations (2.21-(2.5) into Q-(2.1), we obtain the following equation for r: 

6 (1 - X~)IYI - yr' + ss f(l -X2) r’ -+- 2a1 = 0 (2.6) 

The same substitution yields, after eliminating the dimensionless pressure q, the 

relation 

(ez')" = V&P)" 4-2 (1 - Sy(&‘Z + IT’) + p (2.7) 

where the following notation is introduced: 

2=(1-- X") y' + zxy, f” = fRS - 2f$ (1 - xrf-'!: (2.8) 

The function f is determined, apart from three integration constants. It is introduced 
in accordance with the method used in 171, so that Eq.(2.7) is integrated three times. We 
adopt arbitrarily the conditions 

f (1) = 1' (1) = f” (I) = 0 (2.9) 

Note that the Eqs.C2.61 and (2.7) in /9/ are incorrectly written. 
Multiplying both sides of Eq.(2.71 by 1 -x2 and integrating, we obtain 

s (1 - CCz)ay"' -+- E‘ (1 - X')[(i - X2) Y" + 2y1 = (2.10) 

l/Z (1 -r")(y")" i_ z (y")'- y2+ r2 f (1 - s")f" $-2x!' - 2f 

The arbitrary constant is put equal to zero, since it is assumed that the axis X=i 
lies inside the domain of the flow. This means that the solution is analytic at .r= 1 and, 
especially, that the conditions y(t)=0 and I' (1) = d hold, the latter following directly 
from (2.21. 

3. Fa~lu~~~ of the bmxndarg due cable. Various boundary conditions can be 
formulated for Eqs.f2.6) and (2.101, specifying, for example, a velocity field of the vortex 
source-type in the plane x =O, and the conditions of analyticity on the axis x ==1. In 
this formulation the inhomogeneous boundary conditions will serve, in addition to the mass 
force f, as the source of the motion. However, a single case exists in which the problem is 
formulated in an unbounded region, when there are no mass forces, with the conditions of 
regularity on the semi-axes x=-+-l, and the motion is induced by a source of momentum at 
the origin of coordinates. This g the Landau jet /3/ for which the solution can be written 
in analytical form when l'am.0 and 851, in the form y--2(1-- xs)/(A,, - 2) where A, is 
an arbitrary constant which can be related to the momentum of the jet. Thus, the case of a 
Landau jet is spectral when there is a non-trivial solution with homogeneous conditions at 
r==-H. If we formulate an analogous homogeneous problem in the half-space x>O, then, 
provided that the condition of adhesion on the plane holds, there will be no non-trivial sol- 
utions. 

We have two,problems here. Is it not possible to find a distribution of the viscosity 
s(s)* such that when there are no mass forces, firstly, a selfsimilar solution of the 
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problem of a jet can be found, and secondly, a non-trivial solution of Eq.(2.6) exists, 
regular at 5 = 1 and satisfying one of the homogeneous conditions, namely r'(O) = 0 (weak 
autorotation) or r(O) = 0 (strong autorotation)? We note that when t.he second problem 
is solved satfsfactorily, the problem of the non-trivial solvability of Eq.(2.10) vanishes 
since the equation becomes inhomogeneous when ??+0. 

It transpires, that a selfsimilar ascending jet cannot satisfy the conditions of adhesion 
for any form of the relation a (s), and the bifurcation of autorotation is thereby elimin- 
ated. In order to change this situation we must introduce into the problem other sources of 
motion which are not point sources. 

4. hb?PeXiSteRCe of sotutions W&F the co?K.8itions of adheSiO?Z. We shall first turn 
out attention to Eq.(2.6). If 8ss 1, then integration shows at once that the function f (5) 
is monotonic and a non-trivial solution is impossible. We convert Eq.(2.6) identically to 
the form 

[E (1 - 2%) YI' + 2 (ZET) = 283: + yY (4.1) 

For weak or strong autorotation it is necessary that the function r (2) has one or 
several extremal points at which I'=O. Let us consider the point z+ nearest to the right 
end. We can assume without loss of generality, that I'(zO)>O. It is clear that under these 
conditions the function I (2) decreases monotonically over the interval Q<z<: while 
remaining positive, and r (1) = 0. Integrating the relation (4.1) from zp to x and using 
the condition that I'(z) is analytic when +=I, we obtain 

1 
a (I) ~(1) = +~(~~le)r(~~)+- S (er +%uI') d2 (4.21 

r* 

Let e(a)>O. Then from (4.2) it follows that the condition r(i)= 0 cannot be satis- 
fied if an ascending flow with p(z)<‘0 exists near the axis in the interval (lo, i), smce 
we have r'(z)<0 in that interval. It is clear that the above argument remains valid for 
sufficiently small g(x)&O, and, in particular, for motions at small Reynolds numbers when 
the last term in (4.1), representing the inertial forces, is neglected. 

To obtain further results, we shall write Eq.(2.6) in the selfconjugate form 

From (4.3) it follows at once, that when e'<O, neither of the conditions X'(O)= O,I"(O)= 
0 can be satisfied, i.e. selfconjugation is impossible. To confirm this, it is sufficient 
to integrate (4.3) from 0 to x and obtain the inequality r’ (4 > 0. 

Relation (4.3) will be identically transformed to the form 

(Be f(i - 3f.r' +.2&j}' = 2ar (z@' 

Integrating from 0 to x yields 

From this it follows that when (xE)‘>O, autorotation is impossible. The last in- 
equality yields the sufficient condition for there to be no autorotation 

zy < e(l - 9) (4.4) 

Thus we can hope to obtain autorotation only under the condition that an ascending 
motion of a high viscosity liquid takes place near the axis. 

In what follows, we shall assume that y'(O) = Re 30, r!(O) = 0, 8(~)>0, B'(I) > 0, e(0) = i, e'(0) = 0. 
The last condition is plausible, and is used here only in order to simplify the proof. 

Let us introduce the functions H and G by means of the relations 

H'= G + f, G“' = 2IY/(i - z*), G (1) = G' (1) = G"(l) = 0 (4.5) 

and integrate the relation (2.7) three times. This yields 

(4.6) 

To find the constants C,,C,,C, appearing after every integration stage, we put s=o 
and obtain 
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c, = me - Zf (0) + r* (0) - G” (0) (4.7) 

c* = 2’ (0) - H’ (0) = yn (0) - If’ (0) (4.8) 

c, = Re - H (0) (4.9) 

We shall show that without rotation (r SO), and when there is no field of mass forces 
fies0) selfsimilar motion with condition of adhesion on the plane X=0 is impossible. 

Having satisfied in (4.6) the condition Z(1)=& we obtain 

Substituting relations (4.7), (4.9) and (4.10) into (4.6), we obtain 

(4.11) 

We shall show that when Re>O, the function Z(s) has no zeros in the interval (cp, 1). 
Let us assume the opposite, that Z(z) has one root Z(%)= 0. Then, putting 2= 2,, in (4.11) 
we obviously arrive at a contradiction since all terms on the right-hand side are poSitiVe+ 

Let now Z(z) have two zeros: Z(z& = Z (z.J = @. Substituting z= z, and z=zp into (4.11) 
and taking the difference of these two relations, we can easily arrive at a contradiction. 
In the same manner we can prove 'that Z(x) cannot have an arbitrary number of zeros. When 
the analyticity is assumed, this means that z (5) >, 0. 

From the definition (2.8) of the function Z (I) we can obtain 

(i - sz)qy/(l - s2)l' = z > 0 

therefore Y (4 >, 0. Thus, when there are no mass forces the converging motion of the material 
of the plane causes, when ua (0) <O or according to (2.2) y'(O)= Re>O, only ascending 

motion of the fluid with y(s)>O. This implies, in particular, that the conditions of, 
adhesion y (0) = y' (0) = Re = 0 cannot be satisfied. Indeed, in this case we should have y"(O)> 
0 and the relation y"(O)= 0 is inadmissible since in this case we have, according to (2.10), 
y _=o. This means that according to (4.8)‘ C,>O and this contradicts relation (4.10). 

We note that the above arguments also imply the impossibility of the existence of a 
double-sided jet with condition of symmetry y"(O) =O. Indeed, for such a jet we have, accord- 
ing to (4.8), C,=O, while according to (4.71 and (4.9) c, = zc, >o. But in this case it 
follows from (4.6) that condition 2(1)=0 cannot be satisfied. 

5. Weak autorotation Zn a mode2 of a selfsimitar turbu~snt jet. Let the motion of a 
viscous fluid be generated by a source of abundance Q in the plane, so that us = -QIR when 
5 =O. Then y(O) = 0, y'(0) ==Re. If the fluid is homogeneous, the flow can be described by 
the analytic solution due to Squire /4/, which is characterized by the presence of an induced 
jet near the axis, of intensity which becomes infinite when the value of Re reaches its 
critical value Re, = 7.67 /ll/. Let us consider an inhomogeneous fluid with piecewise-con- 
stant viscosity 

Assuming that the flow in zone 1 is laminar, we put sl = 2, and in zone 2 near the axis 
we write E, = const = p = 1 +,Y&> 1. In this case we must assume in all previous relations 
that e' = 0 everywhere except at the point x = zk. At this point we must set the conditions 
of continuity of the velocities ut and of the components of the momentum flux tensor &,, 
where 

Rn, =PUPS + P%,-P%,; 8, rl = R,%q, (5.1) 

It is convenient to itroduce for the zones 1 and 2 their own variables, by putting 

y = y,, f = l?r, H =H,, O< x<xk (5.2) 
I/ = flya, I- = fir,, H = BH,, 5k <z< 1 

Then, taking into account (2.81, we can write Eqs.(4.61 and (2.6) in the form 

(1 - x%)Y~’ + 2Xyi = '/*.TJ~~ + AZ- A# + AS $_ Hi (5.3) 
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(1 - 2”) ri” = yip;; i 1 1, 2 

Using relations (2.2), (2.4) and (5.3) we obtain, in accordance with (5.1), 

I&l = -n (l - t2)-'!'(Hi' + A - 2A,r), 

l&e = -R (1 - s")-“[Hi - I/, (1 _ 1.2) 11," .+ l'Jiz 4. n.? $- 

A, (1 - 29) $- A,1 

(5.4) 

The requirements of regularity in zone 2 at 2 = 1 leads to the relations A = 2A,,n,:.- 
-A,. Therefore we have, in accordance with (5.3), 

(1 -m"a)y,' + zxy, = V,y,' - ‘41 (1 - 9y -t- fig (5.5) 

After differentiating Eq.(5.51 we see that when y*(1) ==O, the quantity g4' (2) is 
basically indeterminate. It should be specified, together with A, and rel {Z), as an 
arbitrary parameter necessary for integrating Eq.(5.5) from J = 'i to x = 2b. 

For the zone 1 we write 

(I - x2) yr' -i- 2zy, = Vzyl? + Br - A,2 -t- f?? -i H, (a.ri) 

We shall use the conditions of compatibility at the point 5 -I 2'11 to find B, N,, 11,. 
Taking into account (5.2), we have 

Y, -= pyz, Y; = by,', r, -= pr, (5.7) 

Using relations (5.4) and taking into account (5.71, we obtain 

B - 2x$, =i 8" BA, (1 - 3&f 4 H,'l - II, (5.81 

EXk -t- 3, (Z - 2x*y f 3, = p” I2.4,Xk (I - Sk) -J- ff, - 

‘!$ (1 - Xkl) H,“I - H, + “Ia (1 - Xk2) 8,” 

(1 - ~2) r; + zxkr, = p? [(I - xky r,’ i_ 2xkr,~ 

(5.9) 

(5.10) 

Moreover, according to (5.6) we have 

Bxk - &xka i ‘% = c1 - xk”) Y,’ + 2xkl/l - ‘/ZY: - N, (5.11) 

The parameters B. B,, f& are found from the system of Eqs.(5.8), (5.9) and (5.11), 
taking (5.7) into account, after solving Eq.(5.5). This enables us to integrate Eq.(5.6)from 
zx:to x = U, using the first condition of (5.7). Let the parameter da be determined by the 
requirement that g(O) =O. Then, using the given ~~(1),r~(I), B, zA we obtain the complete 
solution including the quantity Re == y,‘(O). 

The problem of specifying the parameters ok (1) and 2% demands that we turn to 
experimental data and physical models. We know that the turbulent flow at the kernel of the 
jet is selfsimilar and practically independent of the method of generating it. According to 
the results of 1X2/ the longitudinal velocity on the axis of the turbulent jet is given by 
the expression ue = 3Kl(~~~~~), where K = (~~/0.0~6i)a is the momentum of the jet. The above 
relations yield 

RuRIvl = --y,' (1) = 460.5 (5.12) 

We can eliminate the parameter xk, provided that we assume that the boundary xk co- 
incides with the point of the maximum of the function y(x) characterizing the ejection 
capacity of the jet. We have an increasing ejection of the surrounding fluid in the outer 
region z<srt, while within the cone x>zk the flow rotates in the direction of the axis, 
and this is the most likely reason for its intense turbulence. 

We shall therefore use y'(&) = 0 as the tentative hypothesis. As regards the par- 
ameter p, the relation @(Re) will be determined by (5.12) and the parameter can vary over 
a wide range, beginning with unity at the instant of turbulence begins. 

According to the model used, the jet will remain laminar as Reynolds number Re = Q/v 
increases, until the value y; (If = -460.5 is reached, with the corresponding value of 
Re* = 7.56. After this an increase in Re will lead to an increase in the value of p, with 
Condition (5.121 holding. It is clear that there will be no crisis in this model of a 
turbulent jet. 

Computations for the case of I=0 and small negative values of fi'(i), show that the 
quantity ri(sk) in (5.10) remains negative within the range 1 < p < 1.08 (Re* < Re < 8.2). 
The value of rr'(zk) becomes zero when fi ='1;08; Re = 8.2, and in this case I'r'meO over 
the whole zone 1. Therefore the equation for the circulation with boundary conditions 
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I’(i) = 0, r’(O) = 0 has a non-trivial solution. For these parameters we have a bifurcation 

of the new stationary solution with non-zero azimuthal velocity and zero rotational friction 
in the plane, i.e. the bifurcation of a weak autorotation. 

We note that although we have r; (0)> 0 at large p and the relation I'(x) has a maximum 

at x=xk, nevertheless r1 (0) > 0, i.e. we cannot obtain, within the framework of the 

model of piecewise-constant viscosity, strong autorotation for a purely ascending flow. We 

did not, however, succeed in proving or disproving this property for an arbitrary function 

a (5). 
As we said before, the case of strong autorotation is characterized by the constancy of 

circulation over the whole zone 1. This makes it possible to determine, using (5.10) and 

(5.7), the parameter p corresponding to the condition of weak autorotation 

p = 2&$,/[(1 - lk2)r2' + 22,r.J (5.13) 

The bifurcation point obtained corresponds to Condition (5.121, which ceases to hold in 
the case of a swirling jet. 

In order to solve the modes with considerable rotation, we shall waive Condition (5.12)‘ 

regard the bifurcation number Re as an arbitrary parameter, and determine p using (5.13). 

Then we obtain, in place of a point, a bifurcation curve (curve 1 in Fig.1) on which the 

quantity ~~'(1) increases from --co when fi = i and Re = Re,. 
For p which are not small, we obtain the pattern shown in Fig.1 where z=Re/Re,, 

ra = I?& (0)&l The area to the left of curve 1 in the plane To =0 corresponds to non- 

swirling flows. At the line 1 we have the bifurcation of the swirling modes (i.e. modes with 

I- + 0). The mild character of their excitation implies their stability, and the instability 
of the initial modes /13/. The families of the lines b = const (p = 1, 3, 10, 30) and r. = 
const (f, = 0. 1, 2, 3) form a surface symmetrical about the plane PO = 0. The surface is 
bounded by the curve Z(b = %), which corresponds to the crisis involving the loss of exist- 
ence of the laminar swirling jets induced by the vortex sink in the plane. 

In real turbulent swirling jets the parameters p and Re are connected with each other, 
but the relation between them is not known. We shall illustrate this by making the simplest 
assumption that the relation remains the same as in the case without rotation, when it iS 

given by (5.121. The hypothesis in question corresponds to curve 3 in Fig.1 and the results 
shown in Fig.2. The quantity To increases as RP increases, and tends to the value l',=3.8. 
The region occupied by the turbulent kernel expands, without, however, reaching the Wall; as 
Re-+oo, we have zk -+0.33. An unstable turbulent mode without rotation corresponds to the 
dashed line. 

Fig.3 shows the distribution of the quantities Q= y/)3 and f= P/B over the angle 13 
for a number of typical modes. curve 1 corresponds to the laminar (yl' (I)=-460.~9, and curve 
2 to the turbulent (yr' (1) = -460.5, t3 = 20, Re = 268) non-swirling jets. The curves 3 (5) and 
4 (fi, correspond to the autorotation mode (Re= 140, b= 12). We see that even considerable 
turbulence only slightly affects the flow, while swirling, on the other hand, deforms the 
pattern sharply with the jet becoming wider and weaker. There is no reverse flow near the 
axis, which characterizes strongly swirling jets /5/, in case of autorotation. 

The upper corner in Fig.3 shows the scheme of meridional motion. 

6. Strong ~~oro~u~~~ in the mass force fietd. We can achieve a strong autorotation 
with conditions of adhesion on the plane, by bringing in special mass forces, e.g., the 
buoyancy forces connected with the thermogravitational mechanism. Let us consider the self- 
similar problem of thermal convection in the half-space 220. In the general case we must 
attach to the equations of motion (2.1) the equation of heat conduction containing the con- 
vection terms. In order to simplify the problem, we shall consider the case when the Prandtl 
number Pr = 0, assuming that the temperature satisfies the Laplace equation and does not 
depend on the motion of the fluid. 

From the definition of an Archimedean forces F = (p- pm)g an;,pthe Boussinesq approxi- 
mation for the density (a is the volume expansion coefficient) m= l-a(T - T,), it 
follows that selfsimilar motion under the action of the force (2.3) is possible in the case 
of a thermal quadrupole (see the second of the papers quoted in the previous footnote). When 
the fluid is homogeneous, we have the temperature field T = T, -f-y (3x2- l)Ka, correspond- 
ing to this quadrupole, which has a sign-alternating overheating T_ T, with zero thermal 
flux. The intensity of the thermal quadrupole is characterized by the parameter 0, or by 
the Grasshof number Gr = aTg/va. When p>O, the zone near the axis is heated (T> T=& 
and the zone near the wall is cooled (T< T,). 

Let us have, in the general case, T = T, + yi3 (x)R-+. Then, remembering that the mass 
force F has a unique non-zero component F, and using (2.3), we obtain 12 =Gr@. The 
quantities fs and fe appearing in (2.8) are determined using the formulas fn = 6 fe =;I 

-JJT=i$,. Taking all this into account, we obtain 

f" = Gr@Y"+ 36) (6.1) 
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The function @ (2) is given by the equation 

(1 - x2).6" -2&V + 66 = 0 

Using its general solution, we obtain the solution of Eq. (6.1) 

The conditions of conjugation (5.7)-(5.10) are supplemented by the requirement that the 
temperature and thermal flux should both be continuous, under the assumption that the ratio 
of the thermal conductivities is h,lli, = 8. The last assumption obviously cannot be realized 
physically, but it enables us to solve the temperature problem analytically in full. In a 
more realistic formulation, which takes into account the empirical data on turbulent heat 
transfer, we must reject the condition Pr = 0 and solve numerically the complete inter- 
linked system of equations of motion and energy. 

If our aim is to obtain only estimates of the results, then we put, for z=21(, 

6, = 6,, 6,' = OS, (6.3) 

The parameters M and N have different values in zones 2 and 1. From the condition of 
regularity on the axis we have N, = 0. Writing arbitrarily M,= 1, we obtain the values of 

Ml and N, with the help of (6.3) 

after which we construct the solution using the same method as in Sect.5. 
If now our aim is only to detect the bifurcation of the autorotation, then we will 

assume that the quantities r and G (see (4.5)) are infinitely small, so that we can take 
H = f. The problem will now be reduced to solving Eqs.(5.5) and (5.6) where the quantities 
Hi are found using (6.2) and (5.2). When r=l, we fix the following quantities: Ya (1) = 
Te (1) = 0, ~~'(1) = -460.5, rn' (1) = -68, 8'4 1. The parameters A, and p are found hy satisfying the 
conditions of adhesion Y,(O) = Yl' (0) = 0 , using the method of two-dimensional secants. 
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The results of computations show that when &<61.09, the mode is laminar and P= 1. For 

large values of Gr the mode becomes turbulent (6>1), but without rotation. When Gr= 230 
we have detachment and the mode becomes a two-cell mode (see the pattern shown in the UPPer 

part of Fig.4). When Gr = 3920, 6 = 4.69, we have a bifurcation of the strong aUtOrOtatiOn. 
The presence of two cells in meridional flow is obviously the necessary condition for strong 
autorotation. 

Relations B (6) and r (6) corresponding to the bifurcation parameters are shown in 

Fig.4. The dashed lines denote the boundary of the turbulent kernel (es II 20"). The circu- 

lation, which varies sharply within the kernel and near it, reaches a Constant Value. When 

there is no region with u<9, the quantity T remains constant. According to (5.3), when 
the sign of y changes, so does the sign of p", and a boundary layer appears on the wall as a 
result, where the value of I? falls to zero. We note that a two-cell mode is also possible 
when Pr>O. 

7. Discussion. In connection with the phenomenon of autorotation, the problem arises 
of the mechanism by which non-zero angular momentum is generated. An analysis of the 
stationary solutions shows only that when the Reynolds number increases, a stable mode with 
non-zero rotational velocity branches off the initial mode without rotation, although the 
moment of external forces remains, as before, equal to zero. In the case of strong auto- 
rotation a frictional force moment exists in the plane, as well as an angular momentum flux 
moving together with the fluid from infinity, i.e. infinity serves as a constant source of 
momentum. 

In the case of weak autorotation, the total angular momentum flux across a hemisphere of 
any radius is equal to zero. However, the presence of angular momentum implies indirectly 
that such a flux is present in the transitional process of establishing a new mode, although 
such a non-stationary process is not discussed here. 

Thus, the exchange of angular momentum with infinity is essential for both types of 
autorotation. Similar phenomena are already known in hydrodynamics. A process, similar to a 
degree, takes place in a flow past a wing profile. We find, within the model of ideal fluid, 
that according to the Zhukovskii-Chaplygin mechanism, when a steady state mode is established, 
the vortices are carried away to infinity, with compensating circulation remaining around the 
wing. In a viscous fluid we find it necessary, in order for constant circulation to be 
maintained, that a steady state flux of vorticity to infinity exists. In the first case we 
have the analogy with weak autorotation, and in the second case with strong autorotation. 
In the problem of autorotation in a jet /2/, the non-stationary process of establishing a 
completely defined angular momentum inherent in the secondary mode, was traced explicitly. 

Unlike the already known cases, here the necessary condition for the bifurcation of 
rotational mode is, that the initial irritational flow be turbulent. In this connection we 
can speak of discovering a new effect, namely the turbulent vertical dynamo. 

The fact that strong autorotation really exists is confirmed by the experiment /14/ in 
which an ascending flow emerging from a point source of heat with external stable stratifi- 
cation (which resembles the quadrupole model discussed here), began to rotate at fairly high 
Grasshof numbers. 

In order to confirm the possibility of weak autorotation, we devised;together with 
T.V. Li, the following experiment. A motion in a cylindrical tank of 0.6m diameter con- 
taining 200 '1. of water was induced by a radial flow of air in a 5 mm gap between the surface 
of water and the lid, and the flow was generated by extracting air through a 5 mm diameter 
hole at the centre of the lid. Observation showed that at low air flow rates the liquid in 
the tank moves meridionally without rotation. When the air flow rate becomes sufficiently high, 
the liquid gradually begins to swirl and sometimes it begins to rotate in a direction deter- 
minted by the initial small twist, Since the rotational friction between air and water is 
small, it follows that the conditions of the experiment are close to the problem discussed 
in Sect.5. These results can be used to support the postulate that a vertical dynamo really 
exists. It should, however, be stressed that a more-thorough experimental investigation is 
needed. 

From amongst the possible objects to which the results obtained here might be applied, 
we shall mention the astrophysical jets whose nature remains obscure. From the point of 
view of the analysis carried out here, we cannot exclude the possibility that the astrophysical 
jets are generated by an accretion disc contracting towards the centre of gravity, which drags 
in the surrounding interstellar gas and forms a near-axial jet. The turbulence leads to the 
formation of a highly viscous kernel and a weak autorotation together with the disc. Thus 
we find that astrophysical jets are able not only to shed angular momentum from the system, 
but also to generate a new momentum. also, it cannot be precluded that the mechanism can also 
be used to elucidate such a wide prevalence of rotational motion in the cosmos. 

The theory of strong autorotation also finds the most likely applications in atmospheric 
processes. 
autorotation 

The need for a two-cell structure makes the conditions of appearance of a strong 
sufficiently special and hence fairly rare under normal conditions. Nevertheless, 
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in /15/ a special chapter is devoted to describing firestorms where it is shown, in particular, 
that such a phenomenon occurred in Hiroshima as a result of the atomic bomb. An ascending 
flow of heated air above a water surface can also generate a whirlwind. A study of the model 
problem shows that in this case two jets appear, one in air and the other in water. The 
latter is turbulized earlier, but this does not lead to autorotation. Autorotation occurs 
when the air jet is also turbulized. 

The traditional point of view explains the widespread, and sometimes observed sharp 
increase in rotational motion in nature (meteorology and in the cosmos), only be constant 
action of external causes, or by the presence of initial diffuse angular momentum. However, 
alternative mechanisms of generation of rotation are possible, such as instability, and in 
particular the turbulent vertical dynamo discussed here. 
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